

Plunger Lift Evaluation

ABC Energy Company
Well Name
Location

FIELD: Northern AB FORMATION: Name

Test Date: February 14, 2011 (Analysis Provided by DefOpt)

FIELD CONTACT: Mr. Engineer

PREPARED BY: Riley Moore

DATE: April 7, 2011

Well Parameters

Tubing ID (mm) = 50.67Midpoint of Perfs Depth (m) = 1038.25

% CO2 = 0.1% H2S = 0

Casing ID (mm) = 101.6

Gas Flow Rate (e3m3/d) = 9.5

Water Flow Rate (m3/d) = 0.1

Condensate Flow Rate (m3/d) = 0

Flowing Tubing Pressure (kPa) = 810

Flowing Casing Pressure (kPa) = 1245

Tubing Length (m) = 1034.99Reservoir Pressure (kPa) = 2865

Tubing OD (mm) = 60.3

Top of Perfs (m) = 1036

Plunger Set Depth (m) = 1033.88

Well Results

Calculated Critical Rate (e3m3/d) = 9.8

Current Flowing B. Hole Pressure (kPa) = 1347 Optimized Flowing B. Hole Pressure (kPa) = 959.2

Est'd Optimized Rate (Decline) = 10.0

Est'd Optimized Rate (IPR) (e3m3/d) = 10.9

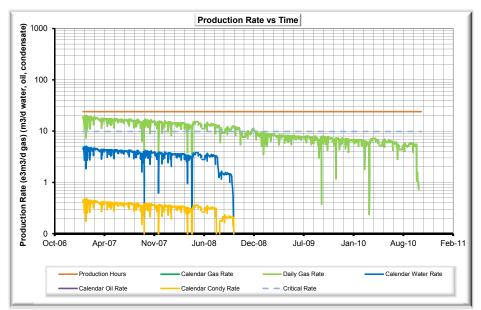
Optimized Bottom Hole Velocity (m/s) = 5.9

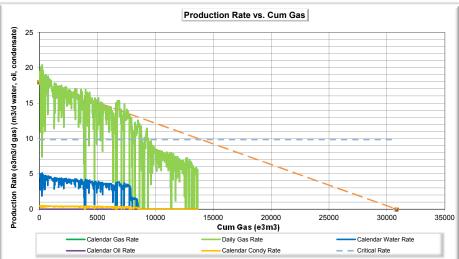
Est'd Optimized Surface Velocity (m/s) = 6.1

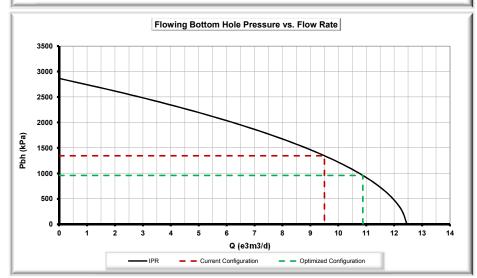
Recommended Operation

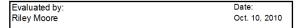
Recommended Cycles Per Day = 3

Est'd Max Req. Casing Build Pressure (kPa) = 1276.5


Expected Slug Size (m3/Cycle) = 0.0351


Est'd Min Total Shutin Time (Conventional) (hrs/day) = 1.0


Comments & Recommendations


This Plunger evaluation was completed using Customer supplied data. Some assumptions had to be made to complete portions of the evaluation due to missing or incomplete information. Using the 60.3mm production tubing as the producing string, the Critical rate to lift liquids was calculated @ 9.8 e3m3. Current production is above the Critical Rate to lift liquids. The wells completion & gas velocities will accomodate the operation of a plunger system.

A Decline trend and IPR curve were developed to determine the possible Optimized gas rate of 10.7 - 13.3 e3m3. Fluid volumes and build pressures will accomodate the operation of a plunger system @ 3 "Recommended" cycles / day. We recommend that a Conventional plunger system be used to relieve the fluid column, and unload the well.

